skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Xu, H., Liu, M., Bu, Y., Sun, S., Zhang, Y., Zhang, C., Acuna, DE, Gray S., Meyer, E., & Ding, Y. (2024). The impact of heterogeneous shared leadership in scientific teams. Information Processing & Management, 61(1), 103542. 
    more » « less
  2. null (Ed.)
    Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar with machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way to integrate multiple views, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we discuss the relationships between MVC and some related topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some commonly used multi-view datasets are introduced and several representative MVC algorithms from each group are run to conduct the comparison to analyze how and why they perform on those datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination. 
    more » « less
  3. null (Ed.)
  4. Free, publicly-accessible full text available July 1, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. Recently, integrated optics has become a functional platform for implementing machine learning algorithms and, in particular, neural networks. Photonic integrated circuits can straightforwardly perform vector-matrix multiplications with high efficiency and low power consumption by using weighting mechanism through linear optics. However, this cannot be said for the activation function, i.e., “threshold,” which requires either nonlinear optics or an electro-optic module with an appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integration is challenging and is rather inefficient. Here, we demonstrate an electroabsorption modulator based on an indium tin oxide layer monolithically integrated into silicon photonic waveguides, whose dynamic range is used as a nonlinear activation function of a photonic neuron. The thresholding mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drives the electroabsorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNIST classification neural network used for benchmarking the nonlinear activation function and compared with an equivalent electronic module. 
    more » « less